EUPFRQNT]

Controlling Your Processes

To use a stage metaphor, all the processes you want to run on
your machine are like actors, and you are the director. You
control when and how they run. But, how can you do this?
Well, let's look at the possibilities.

The first step is to run the executable, Nosmally, when you run a
program, all the input and output is connected to the console. You
see the output from the program and can type in input at the key-
hoard. If you add an & to the end of a program, this connection to
the console is severed. Your program now runs in the background,
and you can continue working on the command fine. When you run
an executable, the shell actually creates a child process and runs your
executable in that structure. Sometimes, however, you don’t want to
do that. Let’s say you've decided no shell out there is good enough,

" 50 you'ré going to write your own. When you're doing testing, you
want to run it as your shell, but you probably don't want to have it
as your login shelf until you've hammered out all the bugs. You can
run your new shell from the command line with the exec function:

exec myshell

This tells the shell to replace itself with your new shell program.
To your new shell, it will fook like it's your login shell—very cool.
You also can use this to load menu programs in restricted systems.
That way, if your users kill off the menu program, they will
be logged out, just like killing off your login shell. This might be
useful in some cases. '

Now that your program is running, what can you do with it?
If you need to pause your program temporarily (maybe to look up
some other information or run-some other program), you can do
s0 by typing Ctrl-z {Ctrl and z at the same time). This pauses your
program and places it in the background. You can do this over
and over again, collecting a list of paused and "backgrounded”
jobs. To find out what jobs are sitting in the background, use the
jobs shell function. This prints out a list of all background jobs,
with output that looks like this: i
[1i+ Stopped man- bash

If you also-want to get the process 1Ds for those jobs, use
the -1 option:
F1]+ 26711 Stopped man bash

By default, jobs gives you both paused and running background
processes. If you want to see only the paused jobs, use the -5
option. If you want to see only the running background jobs, use
the -r option. Once you've finished your sidebar of work, how do
you get back to your paused and backgrounded program? The shell
has a function called fg that lets you put a program back into the
foreground, If you simply execute fg, the last process backgrounded
is putled into the foreground. If you want to pick a particular
job to put in the foreground, use the % option. 3o if you want to
foreground job nimber 1, execute fg %1. What if you want your
backgrounded jobs to continue working? When you use Ctrl-z to
put a job in the background, it also is paused. To get it.to continue
running in the background, use the bg shell function (on a job
that already has been paused). This is equivalent to running your

16 | october 2010 www . linuxjournal.com

program with an & at the end of it. It will stay disconnected from
the console but continue running while in the background.

Once a program is backgrounded and continues running, is
there any way 1o communicate with it? Yes, there is—the signal
system. You can send signals to your program with the kitt
procid command, where procid is the process ID of the program to
which you are sending the signal. Your program can be written
o intercept these signals and do things, depending on what signals
have been sent. You can send a signal either by giving the signal
number or a symbolic number. Some of the signals available are:

B 1: SIGHUP — terminal line hangup

"B 3: SIGQUIT — quit program -

B 9: SIGKILL — kill program

B 15: SIGTERM — software termination signal
| 30: SIGUSR1 — user-defined signal 1

| 31 SIGUSR2 — user-defined signal 2

if you simply execute kil1, the default signal sent is a SIGTERM
This signal tells the program to shut down, as if you had quit the
program. Sometimes your program may not want to quit, and
sometimes programs simply will not go away. In those cases, use
kill -9 procid orkill -s SIGKILL procid to send a kil signal
This usually kills the offending process (with extrerne prejudice).

Now that you can control when and where your program runs,
what’s next? You may want 1o control the use of resources by your
program. The shell has a function called ulimit that can be used to
do this. This function changes the limits on certain resources availab
to the shell, as well as any programs started from the shell. The
command ulimit -a prints out all the resources and their current
limits. The resource limits you can change depend on your particula
system. As an example (this cops up when trying 1o run larger Java
programs), say you need to increase the stack size for your program
to 10000KB. You would do this with the command ulimit -s
10008. You also can set fimits for other resources like the amoun
of CPU time in seconds (1), maximum amount of virtual memory in
KB (-v), or the maximum size of a core file in 512-byte blocks (-c).

The last resource you may want to control is what proportion
of the system your program uses. By default, all your programs are
treated equally when it comes to deciding how often your program
are scheduled to run on the CPU. You can change this with the
nice command. Regular users can use nice to alter the priority of
their pragrams down from O-to 19. So, if you're going to run some
process in the background but don't want it to interfere with what
you're running in the foreground, run it by executing the following:

nice -n 18 my_program

This runs your program with a priority of 10, rather thari.the
default of Q. You also can change the priority of an already-running
process with the renice program. If you have a background proces
that seems to be taking a lot of your CPU, you can change it with:




renice -n 19 -p 27666

This lowers the priority of process 27666 all the way down to
19. Regular users can use nice or renice only to lower the priority
of processes. The root user can increase the priority, all the way
up to —20. This is handy when you have processes that really need
as much CPU time as possible. if you look at the output from
top, you can see that something like pulseaudio might have a
negative niceness value, You don't want your audio skipping
when watching movies.

The other part of the system that needs to be scheduled is
access to 10, especially the hard drives. You can do this with the
ionice command. By default, programs are scheduled using the
best-effort scheduling algorithm, with a priority equal to (niceness
+ 20}/ 5. This priority for the best effort is a value between 0
and 7. If you are running some program in the background and
don't want it to interfere with your foreground programs, set the
scheduling algorithm to “idle” with:

ionice -c 3 my_program

{UPFRONT;

If you want to change the 10 niceness for a program that
already is running, simply use the -p procid option. The highest
possible priority is called real time, and it can be between 0 and 7.

So if you have a process that needs to have first dibs on 10, run it
with the command:

ionice -¢ 1 «n § my_command

Just like the negative values for the nice command, using this
real-time schedufing algorithm is available only to the root user.
The best a regular user can do is:

ionice ~¢ 2 -n @ my_command

That is the best-effort scheduling algorithm with a priority
of 0.

Now that you know how to control how your programs use
the resources on your machine, you can change how interactive
your system feels.

—JOEY BERNARD




